Gravitational lensing as a probe of dark matter on subgalactic scales

Saghar Asadi Department of Astronomy Stockholm University

Erik Zackrisson, Emily Freeland, John Conway, Kaj Wiik, Pat Scott, Hannes Jensen

Outline

- Small-scale ACDM and its challenges
- Role of Gravitational lensing
- Different probes, different constraints
- Strong-lensing systems with VLBI
- Further questions
- Work in progress

The web of cold dark matter halos

Halo and galaxy mass functions

Halo and galaxy mass functions

• Abundance matching → the missing-satellite problem (Moore et al. 99, Klypin et al. 99)

"Galactic luminosity is a monotonic function of halo mass"

• Central slope → the core-cusp problem (Moore 1994, Navarro et al. 1996, 1997)

Is there a universal halo density profile? What is that?

• Normalization → the too-big-to-fail problem (Boylan-Kolchin et al. 2011)

At which z most massive subhalos correspond to brightest dSphs?

 Spatial distribution → the disk of dSphs arounf MW and Andromeda (Metz et al. 2009)

Can collisionless/dissipationless matter form disk?

• Abunda: (Moore et al *"Galact*

[kpc]

- Central : (Moore 1994 Is there
- Normali (Boylan-Kolo *At whic*
- Spatial c Androm (Metz et al. 2

Gravitational lensing at help...

Any supporting observations?

Any supporting observations?

HST + Keck (2.2 & 1.6 micron) observations

(Vegetti et al. 2012)

10⁸ M_{solar} subhalo

Weird: Detections give tentative evidence for *more* substructure than predicted by CDM, and a flatter subhalo mass function

N-body simulations vs. detections Relative substructure surface mass fraction:

sub $t_{
m sub}$

 $f_{\rm sub} \approx 0.002$

N-body simulations vs. detections Relative substructure surface mass fraction:

sub $t_{
m sub}$

 $f_{\rm sub} \approx 0.002$

N-body simulations vs. detections Relative substructure surface mass fraction:

sub t_{sub}

 $f_{\rm sub} \approx 0.002$

N-body simulations vs. detections Slope of the galactic subhalo mass fucntion:

N-body simulations vs. detections Slope of the galactic subhalo mass fucntion:

Resolution effects

Small-scale distortions get washed out by poor observational resolution \rightarrow Detecting low-mass subhalos requires very high angular resolution

<u>Problem:</u>

You cannot have both large sources and great resolution!

- Hubble Space Telescope → 0.1" resolution
 ~ 1 kpc sources (galaxies, stellar continuum)
- ALMA (with 10 km baseline) → 0.01" resolution
 ~ 100 pc sources (galaxies, dust continum, CO)
- European VLBI Network (EVN)→ 0.0003" (0.3 milliarcsecond) ~ 1-10 pc sources (AGN jets)

Inner density profile of subhalos

- Compact dark objects are there, but do they have N-body simulations-favored universal density profile?
- Central subhalo densities can vary a lot, but how big is the difference in lensing signature?
- Slope of mass function on subgalactic scale is related to inner slope of subhalo mass profile.

Inner density profile of subhalos

How many lenses are needed to quantify the substructure mass fraction with quasar jets?

1. Compact dark objects (IMBHs & UCMHs)

(surveying N = 5 systems, with larger than 95% confidence)

$$rac{\Omega_{
m UCMH}}{\Omega_{
m CDM}} \geq 0.1$$

$$rac{\Omega_{\mathrm{IMBH}}}{\Omega_{\mathrm{CDM}}} \geq 0.01$$

2. "Standard" CDM subhalos (NFWs)

- Low number density
- Shallow inner density profile

Source area too small, negligibly small probability of proper alignment

Resolution effects

Small-scale distortions get washed out by poor observational resolution → Detecting low-mass subhalos requires very high angular resolution

<u>Problem:</u>

You cannot have both large sources and great resolution!

- Hubble Space Telescope → 0.1" resolution
 ~ 1 kpc sources (galaxies, stellar continuum)
- ALMA (with 10 km baseline) → 0.01" resolution
 ~ 100 pc sources (galaxies, dust continum, CO)
- European VLBI Network (EVN)→ 0.0003" (0.3 milliarcsecond) ~ 1-10 pc sources (AGN jets)

Smooth lens model

Smooth lens model

Smooth lens + low-mass perturber

0.1

-0.1

-0.1

0

-0.1

-0.1

0.1 0

-0.1 0

-0.1

0.1 -0.1

-0.1

0.1 -0.1 0

-0.1

0.1

0

Astrometric shift and other global effects...

Further questions...

- What is the statistical situation considering predicted galactic subhalo mass function and relative substructure mass fraction? (in progress...)
 - Any (non)detection with subhalo mass/type estimate puts constraints on these two, therefore the nature of dark matter...
- How sensitive is single-lens detection to source internal structure?
- How does the probability depend on source model/magnification distribution of sources, etc.? (in progress...)
- On which scale line-of-sight contaminants become significant?

Where to look for answers? strongly-lensed blazar B1152+199

Lens galaxy

Where to look for answers? strongly-lensed blazar B1152+199

2012

Work in progress...

- Possible to reproduce the curvature with CDM subhalos?
 How massive the subhalo needs to be?
- What are the odds?

Where to look for answers? strongly-lensed blazar B1152+199

