

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

The eccentric dust ring revisited: gas-dust interactions

Lyman α emission from the Fomalhaut debris disk

Gianni Cataldi^{1,2}, Alexis Brandeker^{1,2}, Göran Olofsson^{1,2}

¹Department of Astronomy, Stockholm University

²Stockholm University Astrobiology Centre

10/11 April 2014

3

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

The eccentric dust ring revisited: gas-dust interactions

The eccentric dust ring of Fomalhaut: planetary perturbations or gas-dust interactions?

Gianni Cataldi^{1,2}, Alexis Brandeker^{1,2}, Göran Olofsson^{1,2}

¹Department of Astronomy, Stockholm University

²Stockholm University Astrobiology Centre

10/11 April 2014

Debris disks

- 2 The Fomalhaut system and its eccentric dust ring
- **3** Planetary perturbations: Fomalhaut b
- **4** The eccentric dust ring revisited: gas-dust interactions

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

What are debris disks?

- circumstellar, gas-poor disks consisting of dust, comets and leftover planetesimals
- Kuiper belt / asteroid belt analogues
- follow protoplanetary phase after ${\sim}10\,{\rm Myr}$
- size: from a few AU to >1000 AU
- dust continuously replenished by collisions
- several hundred examples known today

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

What are debris disks?

What debris disks can tell us...

- constrain planet formation theory (e.g. efficiency of planetesimal formation)
- disk structures may indicate planets
- composition of dust \rightarrow composition of planets

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust

Planetary perturbations: Fomalhaut b

The Fomalhaut system

- spectral type: A-star
- distance: 8 pc
- age: 400 Myr
- eccentric dust ring with semi-major axis of ${\sim}140\,\text{AU}$

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

The Fomalhaut dust ring

Herschel PACS 70 μ m Image credit: Acke et al. 2013

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

Is a planet shaping the dust ring?

- Indications for a planet shaping the dust ring (Kalas et al. 2005):
 - centre of dust ring offset by ${\sim}15\,{\rm AU}$ from star
 - sharp inner edge
- ⇒ search for planetary candidates

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

Detection of Fomalhaut b

• detection of Fomalhaut b with HST (Kalas et al. 2008, 2011, 2013)

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

The eccentric dust ring revisited: gas-dust interactions

Image credit: NASA and ESA

The nature of Fomalhaut b

- puzzling spectral properties:
 - detected in optical (e.g. Kalas et al. 2013)
 - ... but non-detection in mid-IR (e.g. Janson et al. 2012)
- \Rightarrow inconsistent with models of planetary spectra
- \Rightarrow detection in *reflected* starlight
- \Rightarrow need additional reflecting surface

Fomalhaut b 2006 2004

Image credit: Paul Kalas (UC Berkeley), 🗇 🕨 🛪 📄 🖌 🚊 🔊 🔍 (~

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

The nature of Fomalhaut b

- proposed models:
 - circumplanetary dust disk (Kalas et al. 2008)
 - transient dust cloud (Kalas et al. 2008)
 - swarm of irregular moons around 2–100 M_\oplus planet (Kennedy & Wyatt 2011)

Image credit: ESA, NASA, and L. Calcada (ESO for STScI)

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

Swarm of irregular satellites

- irregular moon = "satellite on distant, inclined, often eccentric and retrograde orbit" (Wikipedia)
- most are believed to have been captured
- e.g. Saturn: 38 irregular satellites known

Image credit: NASA/JPL/Space Science Institute

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

Swarm of irregular satellites

- · satellites erode by collisions and produce dust
- presumably more dust for planets around young stars
- Fomalhaut b: irregular satellites of a few lunar masses around 2–100 M_\oplus planet can explain the detected emission

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

Fomalhaut b and the eccentric dust ring revisited

 orbit of Fomalhaut b highly eccentric
 ⇒ unlikely to be responsible for eccentricity / morphology of the disk!

Stockholms

Fomalhaut b is not responsible for the morphology of the disk. What now?

イロト 不得 トイモト イヨト

- Fomalhaut c ?
- close stellar encounter ?
- ... gas-dust interactions ?

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

Sharp (eccentric) rings through gas-dust interactions

- alternative without invoking planets: gas-dust interactions
- dust affects gas temperature gas affects dust dynamics
- operates for stars with spectral type as late as K
- works for a wide range of dust and gas masses

Lyra & Kuchner 2013

イロト イポト イヨト イヨト

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

The photoelectric instability

- start with generic dust enhancement (e.g. from collision)
- gas is primarily heated by photoelectrons from the dust
- photoelectric instability:
 - dust heats gas by photoelectric effect
 - \Rightarrow gas temperature rises
 - \Rightarrow gas pressure rises
 - dust concentrates where gas pressure is maximum

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

The photoelectric instability

- start with generic dust enhancement (e.g. from collision)
- gas is primarily heated by photoelectrons from the dust
- photoelectric instability:
 - dust heats gas by photoelectric effect
 - \Rightarrow gas temperature rises
 - \Rightarrow gas pressure rises

. . .

 dust concentrates where gas pressure is maximum

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

Search for gas in the Fomalhaut dust ring

- search for gas emission within the Fomalhaut dust ring:
 - CII 158 μm and OI 63 μm: *Herschel* PACS (non-detections)
 - CO 867 µm: ALMA (non-detection)
- known dust ring structure allows "forward modelling" approach
- general strategy:
 - 1 derive upper limits on OI / CII / CO gas *luminosity*
 - 2 convert into total gas mass using the gas ionisation / thermal balance code ONTARIO

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

PACS observations

Stockholms universitet

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

The eccentric dust ring revisited: gas-dust interactions

18 / 19

19/19

preliminary result for CII

- analysis indicates that PACS data can give stringent upper limits
- upper limits (95% confidence level):
 - solar abundances: $\lesssim 1.9 \cdot 10^{-3} \, \mathsf{M}_\oplus$ of gas ($\Rightarrow \epsilon \gtrsim 10$)
 - C overabundant $300 \times : \lesssim 6.0 \cdot 10^{-5} M_{\oplus}$ of gas ($\Rightarrow \epsilon \gtrsim 300$)

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

Gianni Cataldi

Debris disks

The Fomalhaut system and its eccentric dust ring

Planetary perturbations: Fomalhaut b

The eccentric dust ring revisited: gas-dust interactions

- (interactions with other stars)
 We use *Herschel* PACS and ALMA to search for
- We use *Herschel* PACS and ALMA to search for gas in the Fomalhaut dust ring to test whether gas-dust interactions could be at work

The Fomalhaut system appears as an increasingly complex

planetary system

- 2 The exact nature of Fomalhaut b is unclear
- 3 Current constraints on the orbital elements of Fomalhaut b suggest a different origin of the ring morphology:
 - Fomalhaut c
 - gas-dust interactions