Studying the ISM of nearby galaxies through the Lya emission line

Florent Duval

Stockholm University

Collaborators: Göran Östlin, Lucia Guaita, Matthew Hayes, Thoger Rivera-Thorsen

Outline

- Introduction
 - What is the Lya line? How does the Lya line form in starburst galaxies?
 - Why does the Lya line encode information on an ISM?
- Our work: studying the ISM of Mrk 1486 through the Lyα line
 - Ly α , UV and optical emission from Mrk 1486
 - Our numerical model
- Our results and implication for high-z galaxies
- Summary

Introduction: The Lyα line of star-forming galaxies

The Lyman α line: the brighest emission line produced in starburst galaxies

- Lyman α line:

- A recombinaison line of the hydrogen atom

between the 2sd and the 1st energy level

 $-\lambda = 1215$ A (in Far-UV)

- How does the Lyα line form in star-forming galaxies?

Star-forming galaxy = high neutral hydrogen mass + O and B type stars

 \rightarrow a strong Ly α line is producted in HII regions (7 % of the total luminosity of the galaxy)

- A very useful emission line to study high-redshift galaxies?
- → Numerous populations of very far galaxies have been discovered : LAE, LBG, DLA, LAB ...
- → We can derive: star Formation Rate (SFR), Luminosity Function (LF)...

However, the physics of the Lya line is very complex

- The Ly α line is a « resonant » line \rightarrow in an ISM, Ly α photons are « absorbed reemited », « absorbed reemited » ... by each neutral hydrogen atom encountered
 - \rightarrow the propagation of the Ly α line in the ISM is very complex and depends on : the gas kinematics, the HI content, the dust attenuation, the ISM geometry.

• The Lya line features (strength and line profile) encode many information on the ISM → the ISM physical properties can be derived from the Lya line

The LARS sample

- A sample of 14 nearby starburst galaxies (0.028 < z < 0.181)
- Selected from their L_{IIV} (>10° L_{O}) and EW(H α) (> 100 Å)
- Observed in imaging (UV-optical-Near IR) and spectroscopy with the HST

Mrk 1486: structure of the ISM

- Nearby edge-on disk starburst galaxy (z = 0.037), with SFR = 3 M_o yr⁻¹
- One of the brightess LARS galaxies in Ly $\alpha \rightarrow$ goes against recent simulations that reveal that a strong Lya absorption should emerge from edge-on disk galaxies (Verhamme et al. 2013)

→ the ISM has a complex structure: three different components appear (the galaxy disk and two bipolar outflowing halos; halo 1 and halo 2).

Our numerical model: 3D geometry and the MCLya code

1) 3D geometry:

- Each component has several free parameters :
- \rightarrow Halo1, 2 : V_{exp} , N_{HI} , E(B-V) and T
- \rightarrow **Disk** : V_{exp} , N_{HI} , E(B-V), T and clumpiness of the gas distribution

We constraint V_{exp} , N_{HI} , E(B-V) and T in two ways

1) Fitting the shape of the Lya line of Mrk 1486:

2) Reproducing the following properties of each component

Region	$Ly\alpha$ contribution	UV contribution	$H\alpha/H\beta$ (i.e. dust content)
Halo 1	$78\%^{+1}_{-1}$	$18\%^{+3}_{-3}$	3.30 (1)
Halo 2	$22\%^{+1}_{-1}$	$5\%^{+0.5}_{-1}$	3.42(1.6)
Galaxy disk	0%	$77\%^{+4}_{-4}$	3.85 (6.21)

Results and best fit parameters

Best Fit parameters consistent with the observed properties of Mrk 1486

- Best Lyα line fit :

- Best fit parameters:

Region	Ly α contribution	UV contribution	$\frac{v_{\rm exp}}{{ m km.s}^{-1}}$	N_{HI} cm^{-2}	E(B-V)	Temperature K
Halo 1	74%	16% -	100^{+10}_{-10}		0.04 +0.01	20 000
Halo 2	26%	5%	190^{+10}_{-10}	$8x10^{19}$	$0.071^{+0.01}_{-0.01}$	20 000
Galaxy disk	0%	78 %	130^{+50}_{-50}	$> 5 \times 10^{21}$	$0.40^{+0.1}_{-0.1}$	10 000

Summary

- Due to its resonant nature, the Ly α line is a useful tool to derive the ISM physical properties of nearby and high-z starburst galaxies.
- We have been able to derive the ISM properties of Mrk 1486 1) fitting the Lya line profile and 2) reproducing the observed properties of Mrk 1486.

Region	$Ly\alpha$ contribution	UV contribution	$v_{\rm exp}$	N_{HI}	$\overline{ au_a}$	Temperature
			$\mathrm{km.s^{-1}}$	cm^{-2}		K
Halo 1	74%	16%	100^{+10}_{-10}	$3x10^{19}$	$0.90^{+0.01}_{-0.01}$	20 000
Halo 2	26%	5%	190^{+10}_{-10}	$8x10^{19}$	$1.40^{+0.01}_{-0.01}$	20 000
Galaxy disk	0%	78 %	130^{+50}_{-50}	$> 5x10^{21}$	$4.5^{+0.1}_{-0.1}$	10000

- Our work shows how Lya photons are able to escape from edge-on disk starburst galaxies (it goes against the last numerical simulation of Verhamme et al. 2013)
 - → it seems that the difference between LAEs and LBGs is not only based on an effect of viewing angle

Observational data

1) Spectroscopic data

2) Photometric data

Region		UV contribution	$H\alpha/H\beta$ (i.e. dust content)
	cm^{-2}		
Halo 1	$78\%^{+1}_{-1}$	$18\%^{+3}_{-3}$	3.30 (1)
Halo 2	$22\%^{+1}_{-1}$	$5\%^{+0.5}_{-1}$	3.42(1.6)
Galaxy disk	0%	$77\%_{-4}^{+4}$	3.85(6.21)

The Hα emission

