Accurate spectroscopy of M dwarfs

a possible link to understand planet formation

Sara Lindgren

Astronomy PhD days - Uppsala and Stockholm

11 of April 2014

Outline

- Detection techniques of exoplanets
- Planetary formation theories
- Why do we work with M dwarfs
- What are the problems with working with M dwarfs
- The project outline
- First results

Finding an exoplanet

First planet discovered around a MS star was in 1995. The planet is 51 Peg - a $0.5 M_{\text{J}}$ with a 4.3 day period.

(Mayor & Queloz 1995)

Total: 1780 planets

RV: 556 planets

Transit: 1131 planets

Radial velocity technique

- Detection more massive and/or closer planets is easier, especially around less massive stars
- For an Earth-mass planet a 1 M_{\odot} gives K ~0.10 ms⁻¹ while for a star with 0.3 M_{\odot} gives K ~0.30 ms⁻¹

$$K = \left(\frac{2\pi G}{P}\right)^{1/3} \frac{M_P \sin i}{(M_P + M_*)^{2/3}} \frac{1}{\sqrt{1 - e^2}}$$

Transit technique

- Only possible to observe a transit within an angular range very close to an edge-on configuration
- For solar-type star ΔF will be approximately ~1%, while for M dwarfs ~ 11%

$$rac{\Delta F}{F} \simeq \left(rac{R_P}{R_*}
ight)^2 \qquad \qquad p = rac{R_*}{a} \simeq 0.005 \left(rac{R_*}{R_\odot}
ight) \left(rac{a}{AU}
ight)^{-1}$$

Planet formation theory

Two dominating theories for planet formation: Core accretion and gravitational instability

- Gravitational instability independent of metallicity
- Core accretion dependent of metallicity

Metallicity is an indication of the composition of the original circumstellar disk, from where the star and possible exoplanets are formed

M dwarfs

The faintest, smallest and coolest class of the stars at the Main Sequence, and the most longed-lived

- 2400-3700 K
- $\leq 0.08 L_{\odot}$
- 0.08-0.6 M_☉
- 0.1-0.6 R_☉

M dwarfs are estimated to ~70% of all stars in the Galaxy, representing half of the baryonic matter

Why work with M dwarfs?

Since they are so numerous M dwarfs are of interest for several reasons:

- Stellar and galactic evolution
- Low-mass end of the initial and present mass function
- Larger chance to find planets within the habitable zone
- Possible planet host star connections

Why work with M dwarfs?

Since they are so numerous M dwarfs are of interest for several reasons:

- Stellar and galactic evolution
- Low-mass end of the initial and present mass function
- Larger chance to find planets within the habitable zone
- Possible planet host star connections

Planet-metallicity correlation

 Giant planet FGK hosts have enhanced metallicity compared to the sun

(e.g. Gonzalez 1997; Santos et al. 2004; Fischer & Valenti 2005; Sousa et al. 2011)

Core accretion models can reproduce the observed

correlation with metallicity

(e.g. Ida & Lin 2004a; Benz et al. 2006; Mordasini et al. 2009b, 2012)

 For Neptunian and super-Earth the correlation vanishes for FGK host stars

(e.g. Sousa et al. 2008; Ghezzi et al. 2010; Sousa et al. 2011; Mayor et al. 2011; Buchhaveet al. 2012)

• Core accretion models also predict this. Planets with $M < 30~M_{\rm E}$ should be evenly distributed across all [Fe/H] ranges

Sousa et al., 2011

But all the observational evidence so far have been for FGK dwarfs

... what is the case with M dwarfs?

Why it's so complicated to determine the metallicity in M dwarfs?

- 1. M dwarfs are intrinsically faint and have highly complex spectra
- 2. Continuum opacity is mainly dominated by the H⁻ ion for FGK dwarfs, while for M dwarfs transitions of elements like TiO, VO, FeH, H₂O and CO becomes important

Allard & Hauschildt (1995)

- Abundance of diatomic and triatomic molecules in the photospheric layers gives a forest of weak lines, especially in optical wavelengths
- Gives large problem to identify the continuum level i.e. the reference level
- However, the situation highly improve in the infrared

The main idea

- Work by Önehag et al, 2012 where they analyzed 12 stars in the J band (1100-1400 nm) gave promising results
- Can check the reliability of the derived abundances using M dwarfs in binary systems with hotter companions
- Observations of two binary systems and 22 single M dwarfs have been done with CRIRES spectrograph, located at one of the 8-m telescopes at the VLT. Resolution ~ 50 000

Outline of the project

- Step 1: Analyze two M dwarfs in binary system
- Step 2: Expand the sample to larger range of metallicity and effective temperature
- Step 3: Use this sample with high precision determined metallicity to derive a relationship between photometric colors and metallicity for M dwarfs
- Step 4: Obtain a large enough sample to statistically investigate a possible planets – metallicity connection for M dwarfs

Outline of the project

- Step 1: Analyze two M dwarfs in binary system
- Step 2: Expand the sample to larger range of metallicity and effective temperature
- Step 3: Use this sample with high precision determined metallicity to find a relationship between photometric colors and metallicity for M dwarfs
- Step 4: Obtain a large enough sample to statistically investigate a possible planets – metallicity connection for M dwarfs

Results - T_{eff} adjustment

Effective temperature: 3600 K

Effective temperature: 3400 K

Effective temperature: 3200 K

Effective temperature: 3000 K

Results — metallicity of the G dwarf

31 lines - Ca 1(3), Ca 2 (1), Ti 1(1), Fe 1(16), Mg 1(2), Cr 1(1), Si 1(7)

- Derived metallicity: 0.15 dex
- Average literature value: 0.13 dex (spread 0.06 dex)

Results — metallicity of the M dwarf

14 lines - Ca 1(4), Ti 1(5), Fe 1(2), Mg 1(1), S 1(1), Cr 1(1)

- Derived metallicity: 0.12 dex
- Difference between primary and secondary: 0.03 dex

Conclusion

- Analysis of HIP12048 gives results in agreement with the literature values
- The difference between the derived metallicity value for the G dwarfs companion and the M dwarfs companion agrees very well
- This gives further proof that the method yield reliable abundance determination – i.e. we can use high-resolution spectroscopy in the infrared to obtain accurate metallicities for M dwarfs

Thank you everyone for your attention

Sara Lindgren

sara.lindgren@physics.uu.se