Spectral Synthesis for Protoplanetary disk models

Samuel Regandell Uppsala University

Uppsala-Stockholm PhD Days April 10-11, 2014

Hot "finger" Inner Rim

r_{cond}

10^IAU

Hot flaring surface

Molecular Chemistry

Ices

Atomiclonited

Incoming radiation

scattering by dust

Absorption by gas Sarten

absorption by gas and dust

10^IAU

r_{cond}

K-Rays

Incoming radiation

Cosmic Rays

Interstellar UV

10	A	

r_{cond}

100[']AU

Outgoing (reprocessed) radiation

30µm

1000µm

Thermal continuum emission

100µm

Scattered Light 1µm

		_
0.00	20	
·		

10^IAU

10µm

CO low J sub mm

CO ro-vib CO high J 2-5µm

H₂O (

r_{cond}

H₂O from neutral-neutral reactions

[OI] 63µm

H₂O from photodesoption

e.g. Kamp et al 2013 Bergin et al 2007

[CII] 157µm

10¹AU

100^IAU

Summary

3D hydrodynamical Models

Hydrostatic modeling (Radiative transfer, chemistry)

Spectral synthesis - SEDs, detailed spectra

Giant planet at 5 AU

W Lyra 2009

3D hydrodynamical models

Turbulent disk without planet

Column density naz=180,nr=200 (detail of planet-forming region)

3D hydrodynamical Models

Hydrostatic modeling (Radiative transfer, chemistry)

Spectral synthesis - SEDs, detailed spectra

3D model

$$c_T^2 \frac{dP}{dz} = -\frac{zGM_*}{(r^2 + z^2)^{3/2}}$$
$$\sum_{r} (r) = 2 \int_0^{zmax(r)} \rho(r, z) dz$$

Hydrostatic disk structure

$$\frac{dI}{d\tau_{\nu}} = S_{\nu} - I_{\nu}$$

$$\int \kappa_{\nu}^{abs} B_{\nu}(T_d) d\nu - \int \kappa_{\nu}^{abs} J_{\nu} d\nu + \Gamma_{dust} = 0$$

$$J_{\nu}(r_0) = \frac{1}{4\pi} \left(I_{(r_0, 0, 0)} \Omega_* + \sum_{i=1}^{N_{\theta} \cdot N_{\phi}} I_{\nu}(r_0, \theta_i, \phi_i) \Omega_i \right)$$

3D Radiative transfer (dust continuum)

Dust temperatures Intensities

Radiative transfer - ray directions

Short Characteristic solver

10-20% of rays are suitable for short-chara

3D model

$$\rho = n_e m_e + \sum_i n_i m_i$$
$$p = \left(n_e + \sum_i n_i\right) kT_g$$
$$c_T^2 = p/\rho$$

Obtain structure for next iteration

3D model

$$\rho = n_e m_e + \sum_i n_i m_i$$
$$p = \left(n_e + \sum_i n_i\right) kT_g$$
$$c_T^2 = p/\rho$$

Obtain structure for next iteration

2D+3D model

Resulting Tgas for one azimuth

Water structure

CII line cooling cooling by thermal accomodation on grains OI line cooling CO rot & ro-vib cooling H2 line cooling FeII line cooling H2O rot cooling NH3 rot cooling

azs_planet_192x100x100, log(press) of average over z

-5.2

6

azs_planet_192x100x100, log(Tgas) of average over z

Spectral Energy Distribution

(T-tauri star)

Spectral Energy distributions

Ovelar et al, 2013

